YEAR 13 – MATHMATICS

WEEK 1 - DAY 1

<u>STRAND 1 – COMPLEX NUMBERS</u>

Simplify
$$\left[2(\cos 70^{\circ} + i \sin 70^{\circ})\right]^{9}$$
.

Give your answer in rectangular form.

Simplify
$$\frac{2+3i}{-3+2i}$$

Find the values of x and y such that

$$x + iv = \sqrt{4} - \sqrt{-9} + \sqrt{-16}$$

Solve the equation $z^2 = -32 + 32\sqrt{3}i$

Leave your answers in polar form.

<u>WEEK 1 – DAY 2</u>

STRAND 2 - VECTORS

Find the unit vector that has

the same direction as y = 2i - j - 2k

Find **parametric equations** of the line passing through the points (3, 4, -1) and (9, 0, 7)

Let
$$\underline{a} = \begin{pmatrix} 4 \\ k \\ 7 \end{pmatrix}$$
 and $\underline{b} = \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix}$.

Find the value of k if a and b are **orthogonal**.

Let point A = (-3, 4, 7) and point B = (5, 20, -9)Determine the **coordinates** of point P on the line AB given that AB = 4AP

WEEK 1 - DAY 3

STRAND 3 – FUNCTIONS

Sketch the graph given below:

$$y = -\frac{1}{4}(x-1)^3(x+1)^2(x-4)$$

Sketch the graph given below:

$$f(x) = \frac{x^2 + x}{-2x + 2}$$

Let
$$f(x) = 7 - x^2$$
 and $g(x) = \sqrt{x - 1}$

Find $f \circ g(x)$ and state its range.

WEEK 1 - DAY 4

STRAND 4 - TRIGONOMETRY

Let
$$\cos \theta - \sin \theta = R \cos(\theta - \alpha)$$

Find the values of R and α . Hence or otherwise sketch the graph $\cos \theta - \sin \theta$.

Solve
$$\frac{1}{\sin \theta} + 2\sin \theta = -3$$
 for $0^{\circ} \le \theta \le 360^{\circ}$

Prove the following identity

$$\sin^{-1} x + \cos^{-1} x = \frac{1}{2}\pi$$

WEEK 1 – DAY 5

STRAND 1 – COMPLEX NUMBERS

Evaluate $\sqrt{-100}$

$$u = 3(\cos 90^{\circ} + i \sin 90^{\circ})$$

$$v = 5(\cos 180^{\circ} + i \sin 180^{\circ})$$

Find uv

Express
$$\frac{13}{3+2i}$$
 in the form $a+bi$

Solve the equation $z^2 = 196i$

Leave your answers in polar form.

<u>WEEK 2 – DAY 1</u>

STRAND 2 - VECTORS

Consider the following three dimensional vectors:

$$\underline{a} = 4\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}$$

$$b = -2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$$

- (a) Find |a|
- (b) Find $|\underline{b}|$
- (c) Determine the **dot product** of \underline{a} and \underline{b}
- (d) Hence, calculate the **angle** between \underline{a} and \underline{b}

The equation of a line in symmetric form is

$$\frac{x-1}{4} = \frac{y-2}{8} = \frac{z+3}{12}$$

Give the coordinates of a point which lies on this line.

Let A be the point (12, 3, 4) and let B be the point (-6, 12, -5). Find the **coordinates** of point P on the line AB given that

$$\frac{AP}{PB} = \frac{2}{7}$$

WEEK 2 - DAY 3

STRAND 3 – FUNCTIONS

$$f(x) = x^2$$
 and $g(x) = \sqrt{x-4}$

Find an expression for $f \circ g(x)$.

State the **domain** of $f \circ g(x)$.

Sketch the graph of:

$$y = (x-1)(x+1)^3 (x-3)^2$$

Sketch the graph of:

$$f(x) = \frac{(x+1)(x+4)}{(x-2)(x+2)}$$

WEEK 2 – DAY 4

STRAND 4 – TRIGONOMETRY

$$v = 6\sin\theta + 8\cos\theta$$

Express the above function as:

$$r \cos(\theta - \alpha)$$

Find the coordinates of the minimum point on this function, for $0^{\circ} \le \theta \le 360^{\circ}$.

Prove that:

$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$$

Solve
$$\cos^2\theta = \frac{3}{4}$$
 for $0^\circ \le \theta \le 360^\circ$

WEEK 2 - DAY 5

STRAND 1 – COMPLEX NUMBERS

A complex number is given as z = 2 + 3i

Find

- (a) Re(z), the real part of z
- (b) Im(z), the imaginary part of z
- (c) \overline{z} , the conjugate of z
- (d) $z + \overline{z}$

Use the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

to solve
$$x^2 - 10x + 26 = 0$$

A complex number is given as $w = 1 + \sqrt{3}i$

Find Arg(w), the **argument** of w.

Find |w|, the **modulus** of w.

Convert w into polar form.

Hence, evaluate w4

$$z^3 = 216(\cos 60^\circ + i \sin 60^\circ)$$

Leave your answers in polar form.

WEEK 3 - DAY 1

STRAND 2 - VECTORS

- (i) Find |a|
- (ii) Find |b|
- (iii) Determine the **dot product** of \underline{a} and \underline{b}
- (iv) Hence, calculate the angle between \underline{a} and \underline{b}

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$$

Express this equation in symmetric form

If A is the point (-2, 5, 12) and

B is the point (13, -5, -18), find the

coordinates of point P on the line AB

given that AP: PB = 1:4

WEEK 3 – DAY 2

STRAND 3 – FUNCTIONS

$$f(x) = (x-3)^2$$
 and $g(x) = x + 3$

Find fog(x) and state its domain.

Sketch the following graphs:

$$y = (x+2)^4(x-1)^3$$
.

$$f(x) = \frac{x - 6}{(x - 2)(x + 3)}$$

WEEK 3 - DAY 3

STRAND 4 – TRIGONOMETRY

Prove that:

$$\frac{\sin 6\theta + \sin 4\theta}{\cos 6\theta + \cos 4\theta} = \tan 5\theta$$

$$y = 5\sin\theta + 12\cos\theta$$

Express the above function as:

$$r \cos(\theta - \alpha)$$

Find the coordinates of the maximum point on this function, for $0^{\circ} \le \theta \le 360^{\circ}$.

Solve
$$(2 \sin \theta + 1)(\sin \theta - 1) = 0$$

for
$$0^{\circ} \le \theta \le 360^{\circ}$$

WEEK 3 – DAY 4

STRAND 1 – COMPLEX NUMBERS

Express:

$$\frac{5}{2+i}$$
 in the form $a+bi$

Solve:

$$x^2 - 2x = -5$$

$$w = \sqrt{12} + 2i$$

Find Arg(w), the **argument** of w.

Find |w|, the **modulus** of w.

Convert w into polar form.

Hence, evaluate w³

Solve:

$$z^2 = 64(\cos 90^\circ + i \sin 90^\circ)$$

Express your answers in rectangular form.

<u>WEEK 3 – DAY 5</u>

STRAND 2 - VECTORS

$$\underline{a} = 6\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$$
 and $\underline{b} = -9\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$

Find \underline{a}

Find b

Determine the **dot product** of \underline{a} and \underline{b}

Hence, calculate the **angle** between a and b

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 4 \\ -5 \\ 6 \end{pmatrix}$$

Give the coordinates of a **point** that lies on this line.

Give a direction vector of this line.

If A is the point (12, 3, 4) and

B is the point (-6, 12, -5), find the **coordinates** of point P on the line AB

given that
$$\frac{AP}{AB} = \frac{2}{9}$$

WEEK 4 – DAY 1

STRAND 3 – FUNCTIONS

$$f(x) = x^2$$
 and $g(x) = \sqrt{x-5}$

State the domain of g(x).

Sketch the graphs of:

$$y = (x+2)^3 (1-x)^2$$

$$f(x) = \frac{(x-3)(x+1)}{(x-1)(x+2)}$$

WEEK 4 - DAY 2

STRAND 4 - TRIGONOMETRY

Solve:

$$x^2 - 6x + 25 = 0$$

Prove that:

$$\tan 2\theta + \tan 5\theta = \frac{\sin 7\theta}{\cos 2\theta \cos 5\theta}$$

Express $\frac{2}{1-i}$ in the form a+bi.

$$w=1+\sqrt{3}i$$
.

Write w in polar form.

Express the above function as:

 $v = \sqrt{2}\sin\theta + \sqrt{2}\cos\theta$

$$r\cos(\theta-\alpha)$$

Find the coordinates of the minimum point on this function, for $0^{\circ} \le \theta \le 360^{\circ}$.

Use **De Moivre's Theorem** to find w^5

Solve the equation $z^3 = -8i$.

Solve:

$$\cos \theta (2\cos \theta + \sqrt{3}) = 0$$
 for $0^{\circ} \le \theta \le 180^{\circ}$

WEEK 4 - DAY 4

STRAND 2 – VECTORS

WEEK 4 - DAY 3

STRAND 1 – COMPLEX NUMBERS

$$v = 2 + 3i$$
 and $w = 5 + 4i$

- (a) V
- (b) v+w
- (c) w

$$\underline{a} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \text{ and } \underline{b} = \begin{pmatrix} 6 \\ 2 \\ 1 \end{pmatrix}$$

Find b - a.

Determine the scalar product of the vectors

Find the angle between the vectors

Find the equation of a line passing

through the point (1, 2, -3) and

parallel to the vector
$$\begin{pmatrix} 5 \\ -2 \\ 3 \end{pmatrix}$$
 in:

$$y = (x-1)^3 (x+2)^2$$

$$f(x) = \frac{x+3}{(x-3)(x+2)} \ .$$

parametric form.

symmetric form.

<u>WEEK 5 – DAY 1</u>

<u>STRAND 4 – TRIGONOMETRY</u>

If P is the point (1, -1, 2) and

R is the point (4, 9, -3),

find the coordinates

of a point Q on the line PR

given that PQ : QR = 2 : 3.

Prove that:

$$\frac{2\tan\theta}{1+\tan^2\theta} = \sin 2\theta.$$

 $y = 6\sin\theta + 8\cos\theta$.

Express the above function as:

$$r\sin(\theta + \alpha)$$

Find the coordinates of the minimum and maximum points on this function,

for $0^{\circ} \le \theta \le 360^{\circ}$.

<u>WEEK 4 – DAY 5</u>

STRAND 3 – FUNCTIONS

 $f: x \to x^2$ and $g: x \to x-3$.

Solve:

$$\tan^2 \theta = \tan \theta \text{ for } 0^\circ \le \theta \le 180^\circ.$$

Find:

 $f \circ g(x)$

 $g^{-1}(x)$

<u>WEEK 5 – DAY 2</u>

<u>STRAND 1 – COMPLEX NUMBERS</u>

$$Z = 5 \text{ CIS } \frac{\pi}{2}$$
:

Find: |Z| and arg(Z).

Sketch the graphs of:

Solve
$$x^2 - 4x + 7 = 0$$

Express
$$\frac{1}{2-3i}$$
 in the form $a+bi$

$$W = -\sqrt{3} - i$$
:

Write W in polar form.

Use De Moivre's Theorem to find W^3 Express the answer in **rectangular form.**

Solve the equation $z^3 - i = 0$.

Express the answer in rectangular form.

WEEK 5 – DAY 3 STRAND 2 – VECTORS

$$\mathbf{\underline{u}} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \text{ and } \mathbf{\underline{v}} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$$

Express the vector VU in terms of the unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} .

Find the angle between \mathbf{u} and \mathbf{v} .

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} + t \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

Give a directional vector of this line.

Give the coordinates of a point that lies on this line.

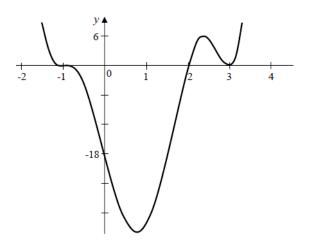
Write the Cartesian equation of the line passing through the point (2, 6, -1)

in the direction of
$$\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$$

If A is the point (7, 4, -2)B is the point (1, 2, -10), find the coordinates of point P on the line AB given that AB = 6AP.

WEEK 5 – DAY 4 STRAND 3 – FUNCTIONS

$$f: x \to x^2 + 1$$
 and $g: x \to 4x - 2$


Find: a) f - g(x)

b) Domain of
$$f - g(x)$$
 c) $f \circ g(x)$

Sketch the graph of:

$$g(x) = \frac{x^2 - x - 2}{x + 3}$$

Write the equation of the function below:

WEEK 5 – DAY 5

<u>STRAND 4 – TRIGONOMETRY</u>

Prove that:

$$\frac{1-\cos 2x}{1-\sin^2 x} = 2\tan^2 x$$

Express $\sin \frac{\pi}{4} \sin \frac{\pi}{12}$ as a sum.

Simplify your answer.

$$y = \cos\theta + \sin\theta$$
:

Write in the form $y = r \sin(\theta + \alpha)$

Sketch the graph of y for $0 \le \theta \le 2\pi$.

WEEK 6 – DAY 1

STRAND 1 – COMPLEX NUMBERS

$$V = 1 - 5i$$
 and $W = -1 + 3i$

Find:

$$\frac{V}{W}$$

$$\overline{vw}$$

shade the region where $-1 < Im(z) \le 2$

Write
$$Z = \frac{1-3i}{1+3i}$$
 in the polar form.

Find
$$Z = \left(\frac{1-3i}{1+3i}\right)^2$$

in rectangular form.

Solve the equation $Z^3 = -27i$.

Give your answer in rectangular form.

WEEK 6 - DAY 2

STRAND 2 – VECTORS

$$\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$
 and $\mathbf{b} = \mathbf{i} + 3\mathbf{j} - \mathbf{k}$

$$\mathbf{a} - 2\mathbf{b}$$

the angle between vectors $\mathbf{\underline{a}}$ and $\mathbf{\underline{b}}$

Find the vector equation of the line passing through (-1, 2, 4) and parallel to (2, -2, -4) in:

parametric form symmetric form

If A is the point (-1, 4, 10) and B is the point (12, -1, -13), find the coordinates of point P on the line AB given that AP : PB = 1 : 3.

<u>WEEK 6 – DAY 3</u> STRAND 3 – FUNCTIONS

$$f: x \to \sqrt{x-1}$$
 and $g: x \to x^2$

Find:

$$g^{-1}(x)$$

Sketch the graph of:

$$g(x) = \frac{x-3}{x^2 - 4}$$

WEEK 6 - DAY 4

STRAND 4 – TRIGONOMETRY

Prove that:

$$\frac{1}{1 + \sin^2 \theta} + \frac{1}{1 + \csc^2 \theta} = 1$$

Sketch the graph of $y = \sin^{-1} x$

for
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$
.

$$y = 4\cos\theta + 3\sin\theta$$
:

Write in the form $y = r \cos (\theta + \alpha)$

Find the coordinates of the minimum and maximum points on this function,

for
$$0^{\circ} \le \theta \le 360^{\circ}$$
.

WEEK 6 – DAY 5

$$V = 3 + 5i$$
 and $W = -1 + i$

Find:

$$\overline{V}$$

$$V - W$$

If
$$\sin x = \frac{3}{5}$$
 and $\sin y = \frac{5}{13}$,

find the exact value of $\cos(x-y)$.